MICROBIAL GLYCOSIDATION OF SOME ANTHRACYCLINE ANTIBIOTICS BY AN ANTIBIOTIC-NEGATIVE MUTANT OF ACLARUBICIN PRODUCER

OSAMU JOHDO, HIROSHI TONE, ROKURO OKAMOTO and Akihiro Yoshimoto^{†,*}

Central Research Laboratories, Mercian Corporation, 4-9-1 Johnan, Fujisawa 251, Japan

HIROSHI NAGANAWA, TSUTOMU SAWA and TOMIO TAKEUCHI

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication January 19, 1993)

Microbial conversion of anthracyclinone monosaccharides using aclarubicin-negative mutant of *Streptomyces galilaeus* was found to produce anthracyclinone disaccharides which had either rhodinose or 2-deoxyfucose as an additional sugar. By this conversion we obtained twelve new anthracyclines from seven anthracyclines which had rhodosamine, *N*-monomethyldaunosamine or daunosamine at C-7 as a glycosidic sugar. All products had a reduced cytotoxic activity in comparison with those of parent compounds. However, some of them showed a therapeutically improved antitumor effects against L1210 leukemia *in vivo*.

In continuing search for microbial origin of new anthracycline antibiotics, we have prepared lots of new hybrid anthracycline antibiotics by microbial glycosidation using antibiotic-negative mutant of anthracycline antibiotic baumycin-, aclarubicin- or daunorubicin-producing microorganisms^{1~8}, among which there were found some compounds with potent antitumor effect such as betaclamycin A (CG7)³, 2-hydroxyaclacinomycin A⁴, and trisarubicinol⁵. In these glycosidations we have used anthracyclinone aglycones, but not anthracycline glycosides, as substrate compounds. Further glycosidation of monosugar anthracyclines could be thus a useful mean for preparation of new anthracycline derivatives with improved antitumor activity. There have been few reports concerning derivation of anthracyclines by microbial conversion. Recently we reported 4-*O*-methylation of some monosugar anthracyclines by specific daunorubicin-negative mutant⁹.

In this paper we tried microbial conversion of some monosugar anthracycline antibiotics using aclarubicin-negative mutant strain KE303 of *S. galilaeus*. Since the glycosidation of anthracyclinones with this mutant produce anthracyclinone trisaccharides which have the same sugar chain as that of aclarubicin. It was expected that the glycosidation would be expanded to monosugar anthracyclines to yield the corresponding anthracyclinone trisaccharides. However, it was proved that the glycosidation of monosugar anthracyclines resulted in not the corresponding trisaccharides, but new disaccharides 4'-substituted with either rhodinose or 2-deoxyfucose^{10,11}.

The antitumor activities of new disugar anthracyclines thus obtained were examined and evaluated

[†] Present address: Faculty of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 724, Japan.

in comparison with those of the parent monosugar anthracyclines.

Results

Bioconversion of Monoglycosidic Anthracyclines with Strain KE303

Strain KE303 was an aclarubicin-negative mutant which kept a glycosidation ability to produce aclarubicin from exogenously added aklavinone aglycone²⁾. In preliminary bioconversion test with this strain we found that a pair of products (symbolized by **a** or **b**) occurred from each of the following monoglycosidic anthracyclines: oxaunomycin (7-*O*-daunosaminyl- β -rhodomycinone) (1)¹²⁾, D788-6 (7-*O*-daunosaminyl- ϵ -rhodomycinone) (2)¹³⁾, yellamycin A (7-*O*-rhodosaminyl- α -citromycinone) (3)¹⁴⁾, D788-5 (7-*O*-daunosaminyl- ϵ -rhodomycinone) (4)¹⁵⁾, 13-dihydrocarminomycin (7-*O*-daunosaminyl-13-dihydrocarminomycinone) (5)¹⁶⁾, betaclamycin T (7-*O*-rhodosaminyl- β -rhodomycinone) (6)¹⁷⁾, or LB-1 (7-*O*-(*N*-monomethyldaunosaminyl)- β -rhodomycinone) (7)¹⁸⁾. All these pairs of products showed higher Rf values on TLC than their parental compounds, suggesting that further glycosidation occurred on the parent compounds. However, we observed that both doxorubicin and daunorubicin were converted into only 13-dihydro derivatives without any significant bioconversion.

Large scale bioconversion was carried out using a 10-liter jar fermentor containing 5 liters of conversion medium. Cultivation was done in the same manner as previously described²⁾. Each substrate $(1 \sim 7)$ gave a pair of products (1a and 1b ~ 7a and 7b) on TLC. Chromatographic data of substrate anthracyclines and products are shown in Table 1. Rf values and retention times of the products of 5 or 6 were different from those of corresponding anthracyclinone trisaccharides (trisarubicinol or betaclamycin A), respectively, and that of 6b was coincident with betaclamycin S (7-O-(2-deoxyfucosyl-rhodosaminyl)- β -rhodomycinone)¹⁷⁾. These facts suggested that the anthracyclinone monosaccharides were converted into anthracyclinone disaccharides.

Isolation

The general procedure for isolation of the products is shown in Fig. 1. The cultured broth $(10 \sim 15)$ liters) was centrifuged and the products were extracted with 10 liters of acetone from the mycelial cake. The acetone extract was concentrated *in vacuo* to about 4 liters and washed with a half volume of CHCl₃ after the pH was adjusted to 2.0 with phosphoric acid. The products were extracted with 5 liters of CHCl₃

		01		1	
Compound	TLC ^a Rf value	HPLC ^b Rt (minutes)	Compound	TLC ^a Rf value	HPLC ^b Rt (minutes)
1	0.21	4.27	4b	0.45	13.18
1a	0.46	9.72	5	0.15	7.48
1b	0.36	4.39	5a	0.36	17.84
2	0.30	19.41	5b	0.30	8.05
2a	0.53	59.09	6	0.23	4.92
2b	0.43	20.42	6a	0.49	10.42
3	0.19	3.95	6b	0.43	4.71
3a	0.45	7.41	7	0.21	4.61
3b	0.39	3.84	7a	0.45	9,99
4	0.32	12.92	7b	0.39	4.60
4 a	0.54	33.74			

Table 1. Chromatographic data of the substrates and products.

^a CHCl₃ - MeOH - H₂O - AcOH - concd NH₄OH (150:50:5:1:1).

^b Column: YMC A312 (ODS); mobile phase: CH₃CN-H₂O (35:65, pH 2.0 with phosphoric acid); flow rate: 1.0 ml/minute.

at pH 8.0. The organic layer was concentrated *in vacuo* to a small volume and an excess of *n*-hexane was added to it to precipitate a crude powder of the products. This crude powder was purified by some combinations of normal- or reverse-phase silica gel column chromatography, preparative TLC, or gel filtration column chromatography. The yield of 3a was too poor to determine its structure.

Structural Elucidation

The structural elucidation of the products was mainly carried out by TLC analysis of aglycone and sugars obtained by acid hydrolysis, MS analysis, and ¹H and ¹³C NMR analyses. The physico-chemical properties of the products are shown in Table 2. Concerning UV and IR spectra, significant difference was not observed between the products and parent compounds. Each molecular mass of $1a \sim 7a$ increased by 98 mass units in comparison with that of the corresponding parent compounds, respectively, and that of $1b \sim 7b$ by 114 mass units similarly.

	1a	1b	2a	2b	3b
Appearance	Reddish brown powder	Reddish brown powder	Reddish orange powder	Reddish orange powder	Yellow powder
Molecular formula	$C_{32}H_{39}NO_{12}$	$C_{32}H_{39}NO_{13}$	$C_{34}H_{41}NO_{13}$	C ₃₄ H ₄₁ NO ₁₄	C ₃₄ H ₄₃ NO ₁₂
FAB-MS (m/e)	$630 (M+H)^+$	$646 (M+H)^+$	$672 (M+H)^+$	$688 (M + H)^+$	$658 (M+H)^+$
MP (°C, dec)	209~214	193~196	152~155	197~202	149~152
$[\alpha]_{\rm D}^{20}$ (c 0.01, CHCl ₃)	+9°	-40°	$+400^{\circ}$	$+67^{\circ}$	-71°
UV $\lambda_{\max}^{90\% \text{ MeOH}}$ nm ($\tilde{E}_{1 \text{ cm}}^{1\%}$)	203 (298), 235 (651), 254 (382), 293 (123), 495 (236), 527 (162), 592 (42)	204 (300), 235 (585), 254 (347), 293 (99), 495 (207), 529 (142), 588 (20)	204 (289), 235 (630), 254 (380), 294 (130), 493 (218), 527 (sh, 146)	204 (273), 235 (600), 254 (355), 294 (120), 493 (213), 526 (sh, 137)	204 (317), 231 (565), 258 (372), 290 (sh, 126), 436 (173)
IR $v \max (KBr) \operatorname{cm}^{-1}$	1590	1600	1725, 1600	1725, 1600	1625, 1605, 1580
	4 a	4b		5b	6a
Appearance	Reddish orange powder	Reddish orange powder	Reddish orange powder	Reddish orange powder	Reddish brown powder
Molecular formula	C ₃₅ H ₄₃ NO ₁₃	C ₃₅ H ₄₃ NO ₁₄	C32H39NO12	C ₃₂ H ₃₉ NO ₁₃	C ₃₄ H ₄₃ NO ₁₂
FAB-MS (m/e)	$686 (M+H)^+$	$702 (M + H)^+$	$630 (M + H)^+$	646 $(M + H)^+$	$658 (M+H)^+$
MP (°C, dec)	158~162	200~204	152~155	164~168	$158 \sim 162$
$[\alpha]_{\rm D}^{20}$ (c 0.01, CHCl ₃)	$+116^{\circ}$	$+49^{\circ}$	$+25^{\circ}$	-35°	-10°
UV $\lambda_{max}^{90\% \text{ MeOH}}$ nm ($E_{1 \text{ cm}}^{1\%}$)	204 (292), 234 (582),	205 (292), 234 (591),	205 (263), 235 (544),	205 (263), 235 (539),	204 (281), 235 (607),
	252 (319), 289 (126),	252 (324), 289 (124),	255 (429), 295 (116),	255 (425), 295 (116),	254 (352), 293 (116),
	479 (172), 494 (465)	478 (175), 495 (169)	493 (228), 527 (157)	493 (225), 526 (155)	495 (221), 529 (148)
IR $v \max (KBr) \operatorname{cm}^{-1}$	1725, 1615, 1580	1725, 1615, 1580	1600	1600	1600
	6b	7a	7b		
Appearance	Reddish brown powder	Reddish brown powder	Reddish brown powder		
Molecular formula	C ₃₄ H ₄₃ NO ₁₃	C ₃₃ N ₄₁ NO ₁₂	C ₃₃ H ₄₁ NO ₁₃		
FAB-MS (m/e)	$674 (M + H)^+$	$644 (M+H)^+$	$660 (M + H)^+$		
MP (°C, dec)	165~168	163~165	167~172		
$[\alpha]_{D}^{20}$ (c 0.01, CHCl ₃)	$+10^{\circ}$	+ 51°	$+49^{\circ}$		
UV $\lambda_{\text{max}}^{90\% \text{ MeOH}}$ nm (E ^{1%} _{1 cm})	204 (277), 235 (609),	206 (254), 235 (651),	206 (255), 235 (653),		
	254 (352), 293 (114),	254 (373), 293 (123),	255 (373), 293 (122),		
	495 (217), 529 (143)	495 (239), 529 (156)	495 (240), 529 (157)		
IR v max (KBr) cm^{-1}	1600	1600	1600		

Table 2. Physico-chemical properties of the products.

VOL. 46 NO. 8

THE JOURNAL OF ANTIBIOTICS

Table 5. If NAME data of the products.										
Proton	1 a	1b	2a	2b	3b	4a	4b			
1-H	7.81 d (7.34)	7.86 d (7.34)	7.88 d (7.33)	7.87 d (7.34)	7.87 d (7.34)	8.02 d (7.32)	7.99 d (7.34)			
2-H	7.69 t (7.34)	7.72 t (7.34)	7.71 t (8.06)	7.70 t (8.07)	7.71 t (8.07)	7.77 t (8.06)	7.74 t (8.07)			
3-H	7.29 d (8.01)	7.31 d (8.80)	7.32 d (8.06)	7.31 d (8.07)	7.35 d (8.07)	7.38 d (8.42)	7.36 d (8.07)			
4-OCH ₃				—	—	4.08 s	4.06 s			
6-H	. —	_	_		7.80 s	—	—			
7-H	5.10 d (2.20)	5.12 br s	5.23 d (2.20)	5.23 br s	5.01 br s	5.26 d (2.19)	5.25 br s			
8-Ha	2.20 d (14.67)	2.19 d (14.67)	2.33 d (14.67)	2.32 d (15.41)	205~225	2.31 d (14.65)	2.29 d (14.67)			
8-Hb	2.12 dd (14.67, 4.4)	2.14 dd (14.67, 3.67)	2.22 dd (14.67, 3.66)	2.22 dd (14.67, 4.40)	2.03** 2.23	2.22 dd (15.02, 4.03)	2.22 dd (14.67, 3.66)			
10-H	4.83 s	4.85 s	4.29 s	4.28 s	4.98 s	4.28 s	4.27 s			
13-Ha	165~189	$1.75 \approx 1.9 \text{ m} (7.34)$	$1.78 \sim 1.88$	1.84 m (6.60)	16~18	1.83 m (7.33)	1.83 m (7.34)			
13-Hb	1.05 ~ 1.07	1.75** 1.9 III (7.54)	1.46 m (6.60)	1.44 m (6.60)	1.0 41.0	1.44 m (7.33)	1.44 m (7.34)			
14-CH ₃	1.10 t (7.33)	1.10 t (7.34)	1.11 t (6.60)	1.11 t (6.60)	1.13 t (7.34)	1.11 t (7.33)	1.11 t (7.33)			
16-OCH ₃	_	<u> </u>	3.72 s	3.72 s	_	3.71 s	3.71 s			
1'-H	5.45 br s	5.45 br s	5.49 br s	5.47 br s	5.36 d (2.93)	5.51 d (3.30)	5.49 br s			
2'-Ha	167~188	17~18	17~19	17~18	175~195	1.75~1.90	1.72			
2′-Hb]1.07 ** 1.00],]=			
3'-H	3.00 m	3.00 br t (8.80)	3.06 br d	3.04 br t	2.1	3.03 br d (9.89)	3.03 br t			
4'-H	3.52 br s	3.51 br s	3.54 br s	3.51 br s	3.76 br s	3.53 br s	3.51 br s			
5'-H	4.15 q (6.60)	4.15 q (6.61)	4.20 q (6.60)	4.12 q (5.87)	3.99 q (6.60)	4.11 q (6.59)	4.10 q (6.60)			
6'-CH3	1.29 d (6.60)	1.30 d (5.87)	1.26 d (6.87)	1.28 d (6.61)	1.30 d (6.60)	1.26 d (6.60)	1.26 d (5.87)			
3'-N(CH ₃);	2 —	—			2.17 s		—			
1″ -H	4.85 br s	4.95 d (2.93)	4.87 br s	4.97 br s	4.92 br t (2.93)	4.86 br s	4.96 br s			
2″-Ha	$2.0 \sim 2.1$	19~205	2.0~2.1	2.06 br d (11.74)	2.05~2.2	1.9~2.05	2.02 dd (12.47, 4.40)			
2″-Hb	$1.7 \sim 1.8$		1.7~1.8	1.90 br t (11.74)		1.6~1.8	1.9			
3″-H	· _ ·	4.1	**	4.12	4.11 br d (11.00)		4.08			
3″-Ha	2.05~2.15	—	$2.05 \sim 2.15$	—		2.0~2.15	—			
3″-Hb	$1.75 \sim 1.85$	—	1.75~1.85	_		1.7~1.85				
4″-H	3.65 br s	3.63 d (2.20)	3.65 br s	3.68 br s	3.64 br s	3.65 br s	3.65 br s			
5″-H	4.13 q (6.60)	4.07 q (6.61)	4.13 q (6.60)	4.18 q (6.60)	4.54 q (6.60)	4.19 q (6.96)	4.13 q (6.61)			
6"-CH ₃	1.17 d (6.60)	1.25 d (6.61)	1.16 d (6.87)	1.25 d (6.60)	1.21 d (6.60)	1.16 d (6.59)	1.23 d (6.60)			
Solvent	$\begin{array}{c} \text{CDCl}_3 \text{-} \text{CD}_3 \text{OD} \\ (10:1) \end{array}$	$\begin{array}{c} \text{CDCl}_3 \text{-} \text{CD}_3 \text{OD} \\ (6:1) \end{array}$	CDCl ₃	CDCl ₃	CDCl ₃	CDCl ₃	CDCl ₃			

Table 3 ¹H NMR data of the products

1223

Proton	5a	5b	6a	6b	7a	7b
1-H	7.82 d (8.07)	7.86 d (7.33)	7.90 d (7.34)	7.85 d (6.60)	7.78 d (7.34)	7.87 d (7.34)
2-H	7.69 t (8.07)	7.71 t (8.07)	7.73 t (8.07)	7.71 t (8.07)	7.68 t (7.33)	7.72 t (8.07)
3-H	7.28 d (8.07)	7.30 d (8.07)	7.33 d (9.54)	7.31 d (6.60)	7.28 d (8.81)	7.32 d (8.80)
7-H	5.20 d (1.47)	5.23 br s	5.15 d (2.20)	5.13 br s	5.09 d (2.20)	5.13 br s
8-Ha	2.54 d (14.67)	2.53 d (14.67)	2.15	$\frac{1}{2}$ 1~2 25	2.20 d (14.67)	2.20 d (14.67)
8-Hb	1.7~1.85	1.75~1.85	2.10 dd (16.14, 2.93)		2.13 dd (14.67, 3.67)	2.14 dd (14.67, 3.67)
10 -H		_	4.92 s	4.87 s	4.82 s	4.86 s
10-Ha	3.14 d (19.07)	3.15 d (19.07)	<u> </u>		<u> </u>	—
10-Hb	2.60 d (19.07)	2.64 d (19.07)			_	·
13-Н	3.67 q (6.60)	3.68 q (6.60)		—		
13-Ha		—	1.65~1.9	1.7~1.9	1.7~1.9	1.75~1.9
13-Hb	—					
14-CH ₃	1.32 d (6.60)	1.33 d (6.60)	1.11 t (7.33)	1.11 t (7.34)	1.10 t (7.34)	1.11 t (7.33)
1'-H	5.47 d (2.94)	5.47 br s	5.53 d (3.67)	5.50 br s	5.46 d (3.67)	5.46 d (2.94)
2'-Ha	1.7~1.9	$1.7 \sim 1.8$	1.7~2.0	1.8~1.9	1.90 dd (12.4/, 3.6/)	$1.8 \sim 1.9$
2′-Hb					$1.7 \sim 1.85$	1./1 to $(12.47, 3.67)$
3'-H	3.04 br d (9.7)	3.02 br t (8.06)	2.1~2.2	2.1	2.72 brd (11.00)	2.67 brd (11.01)
4′-H	3.53 br s	3.52 br s	3.80 brs	3.79 brs	3.76 Drs	3./3 DTS
5'-H	4.14 q (5.87)	4.15 q (6.60)	4.03 q (6.60)	4.03 q (6.60)	4.14 q (6.60)	4.11 q (6.61)
6'-CH ₃	1.28 d (5.86)	1.30 d (5.87)	1.29 d (6.60)	1.30 d (5.87)	1.30 d (6.61)	1.31 d (0.00)
3'-NHCH ₃	_			2.10	2.38 s	2.36 \$
$3' - N(CH_3)_2$			2.20 s	2.19 s		<u> </u>
1″-H	4.85 brs	4.95 d (2.20)	4.93 brs	5.03 d (2.93)	4.80 Drs	4.97 (d (2.94)
2"-Ha	1.95~2.1	1.9~2.05	1.7~2.0	$2.0 \sim 2.1$	$2.0 \sim 2.13$	2.02 dd (12.47, 4.40)
2″-НЬ	$1.65 \sim 1.8$		7	1.8~1.9	1./~1.85	1.94 (d (12.47, 3.67)
3"-H		4.05		4.10 m	20 215	4.08
3″-Ha	1.95~2.15		1.7~2.0	. —	$2.0 \sim 2.15$	
3"-Hb	1.7~1.85	2 (4 1 (2 20)		2 (0 4 (2 20)	$1.7 \sim 1.00$	$\frac{1}{2}$ (2.02)
4"-H	3.05 br s	3.64 d (2.20)	3.38 Drs $4.52 \approx (6.60)$	$3.00 \ (2.20)$	5.03 DI S	5.05 (d (2.93)
5"-H	4.13 q (5.87)	4.07 q (6.60)	4.55 q (0.60)	4.45 q (0.00)	4.09 q (0.00)	4.03 q (0.00)
6 -CH ₃	1.17 d (6.60)	1.25 d (6.60)	1.20 d (0.00)	1.20 a (0.00)	CDCL CD OD	CDCL CD OD
Solvent	(20:1)	CDCl ₃	CDCl ₃	(20:1)	(10:1)	(10:1)

Table 3. (Continued)

AUG. 1993

	Table 4. C Mirk data of the products.												
Carbon	1a	1b	2a	2b	3b	4 a	4b	5a	5b	6a	6b	7a	7ь
1	119.50	119.45	119.64	119.64	119.55	119.79	119.72	119.43	119.43	119.70	119.58	119.48	119.54
2	136.91	136.91	137.07	137.07	136.96	135.71	135.70	136.82	136.84	137.13	137.02	136.86	136.99
3	124.62	124.55	124.83	124.83	125.25	118.39	118.37	124.51	124.48	124.95	124.72	124.60	124.66
4	162.22	162.22	162.69	162.65	162.93	161.06	161.00	162.20	162.17	162.75	162.34	162.13	162.28
4a	115.83	115.84	116.10	116.07	116.10	120.93	120.80	115.88	115.95	116.14	115.90	115.73	115.90
5	190.53	190.62	190.83	190.80	187.56	187.15	187.04	190.33	190.48	190.91	190.69	190.39	190.68
5a	111.87	111.89	111.63	111.61	132.05	112.20	112.13	110.94*	111.03*	112.19	112.00	111.78	112.00
6	156.33	156.26	156.88	156.86	120.55	155.78	155.69	156.44*	156.37*	156.86	156.45	156.28	156.32
6a	134.70	134.63	135.93	135.86	143.14	136.18	136.07	134.61*	134.53*	135.08	134.85	134.64	134.63
7	70.58	70.54	70.87	70.90	73.87	70.94	70.87	69.67	69.74	70.40	70.37	70.65	70.67
8	32.41	32.34	33.42	33.39	33.74	33.47	33.46	33.99	33.86	32.97	32.45*	32.36	32.45
9	71.87	71.93	71.18	71.18	72.13	71.22	71.18	71.68	71.64	71.80	71.90	71.92	71.93
10	65.77	65.63	52.00	52.05	66.18	51.89	51.84	32.69	32.74	66.70	66.06	65.66	65.77
10a	138.59	138.54	135.35	135.35	134.00	133.24	133.18	137.88	137.82	138.59	138.51	138.48	138.47
11	156.99	157.01	156.88	156.86	162.34	156.69	156.61	156.79*	156.74*	157.27	156.45	156.97	156.97
11a	111.29	111.31	111.26	111.25	115.36	111.55	111.49	110.08*	110.16*	111.55	111.38	111.20	111.38
12	186.00	186.30	186.25	186.19	187.84	186.68	186.60	186.00	186.14	186.40	186.14	185.89	186.14
12a	133.22	133.25	133.47	133.43	133.08	135.55	135.43	133.27*	133.35*	133.42	133.27	133.11	133.29
13	30.04	29.93	32.30	32.28	30.39	32.28	32.25	73.05	72.90	30.48	30.19	29.98	30.04
14	6.26	6.13	6.79	6.79	6.65	6.77	6.74	16.61	16.47	6.62	6.39	6.24	6.51
15		_	171.42	171.40		171.64	171.57						
16		_	52.43	52.43		52.33	52.31	_					
4-OMe		_				56.66	56.61		_	_		_	
1'	101.43	101.29	101.84	101,.77	99.36	101.74	101.52	100.63	100.83	101.59	101.39	101.45	101.47
2'	33.86	33.69	34.15	34.25	29.49	34.12	33.90	33.71	33.73	29.71	29.03	30.99	31.12
3'	46.29	46.22	46.77	46.71	61.38	46.66	46.59	46.35	46.29	61.67	61.50	54.03	54.14
4′	81.59	81.92	81.56	81.89	74.21	81.45	81.54	81.39	81.87	73.88	73.84	77.11	77.53
5′	68.02	67.93*	68.22	68.14	68.49	68.12	67.98*	68.11*	68.09	68.58	68.42	67.95*	68.02
6'	17.09	16.98	17.40	17.43	17.92	17.38	17.35	17.14	17.05	17.93	17.74	17.24	17.31
3'-NHMe	_			. —				_	_		_	32.12	32.30
3'-NMe ₂	_	<u> </u>			43.30	_	_		_	43.23	43.08		
1″	100.19	100.81	100.05	100.49	99.15	100.00	100.52	100.15	100.54	98.63	98.99	99.97	100.63
2″	23.91	32.34	23.91	33.03	33.03	23.89	32.83	23.93	32.43	23.76	32.53*	23.93	32.34
3″	25.39	65.13	25.68	65.65	65.90	25.65	65.48	25.45	65.17	25.79	65.45	25.28	65.15
4″	66.76	70.54	67.30	71.09	71.52	67.27	70.95	66.87	70.58	66.70	71.11	66.59	70.54
5″	67.75	67.07*	67.56	66.82	67.10	67.54	66.96*	67.77*	67.09	67.68	66.24	67.89*	67.11
6″	16.63	16.49	17.05	16.83	16.66	17.01	16.80	16.74	16.61	17.06	16.54	16.58	16.67
Solvent	C - M ^a	C-M	CDCl ₃	C-M	CDCl ₃	CDCl ₃	C-M	C-M	C-M				
	(10:1)	(6:1)	5			0	-	(20:1)	-		(20:1)	(10:1)	(10:1)

Table 4. ¹³C NMR data of the products.

Similar values asterisked may be interchanged. ^aC-M: CDCl₃-CD₃OD.

VOL. 46 NO. 8

THE JOURNAL OF ANTIBIOTICS

1225

THE JOURNAL OF ANTIBIOTICS

Table 3. Buildelines of the substrates and produc	Table	5.	Structures	of	the sub	ostrates	and	products
---	-------	----	------------	----	---------	----------	-----	----------

Compound [*]	R ₁	R ₂	R ₃	R ₄	R ₅
1	OH	OH	DN	CH ₂ CH ₃	OH
1a	OH	OH	DN-R	CH ₂ CH ₃	OH
1b	OH	OH	DN-dF	CH ₂ CH ₃	OH
2	OH	OH	DN	CH ₂ CH ₃	COOCH ₃
2a	OH	OH	DN-R	CH ₂ CH ₃	COOCH ₃
2 b	OH	OH	DN-dF	CH ₂ CH ₃	COOCH ₃
3	OH	Н	RN	CH_2CH_3	OH
3b	OH	Н	RN-dF	CH ₂ CH ₃	OH
4	OCH ₃	OH	DN	CH ₂ CH ₃	COOCH ₃
4 a	OCH ₃	OH	DN-R	CH_2CH_3	COOCH3
4b	OCH ₃	OH	DN-dF	CH_2CH_3	COOCH ₃
5	OH	OH	DN	CH(OH)CH ₃	Н
5a	OH	OH	DN-R	CH(OH)CH ₃	н
5b	OH	OH	DN-dF	CH(OH)CH ₃	Н
6	OH	OH	RN	CH ₂ CH ₃	OH
6a	OH	ОН	RN-R	CH ₂ CH ₃	OH
6b	OH	OH	RN-dF	CH ₂ CH ₃	OH
7	OH	OH	mDN	CH ₂ CH ₃	OH
7a	OH	OH	mDN-R	CH_2CH_3	OH
7b	OH	OH	mDN-dF	CH_2CH_3	OH

^a $1 \sim 7$: Substrates; $1a \sim 7a$ and $1b \sim 7b$: products.

DN: Daunosamine

mDN: N-Methyldaunosamine

RN: Rhodosamine

R: Rhodinose

dF: 2-Deoxyfucose

On acid hydrolysis followed by TLC analysis, it was evidenced that the pairs of products obtained from a substrate anthracycline had the same aglycone as the substrate and contained either rhodinose or 2-deoxyfucose in addition to parental aminosugar. Products $1a \sim 7a$ gave rhodinose (Rf value: 0.72) as an additional sugar and compounds $1b \sim 7b$ gave 2-deoxyfucose (Rf value: 0.59), indicating that the products are anthracyclinone disaccharides which were glycosidated with further rhodinose or 2-deoxyfucose. It was supported by two anomeric protons detected in ¹H NMR spectra of the products (Table 3).

In ¹³C NMR analysis (Table 4), the chemical shifts of the products were superimposable on those of

	ΓΝΙΑ / ΡΝΙΑ		
Growth	DNA synthesis	RNA synthesis	DINA/KINA
0.0003	0.29	0.68	0.4
0.002	1.2	3.0	0.4
0.04	4.6	2.5	1.8
0.25	2.6	1.4	1.9
0.50	3.3	1.1	3.0
1.4	>10	2.3	
0.007	0.28	0.23	1.2
0.16	2.6	2.3	1.1
0.50	1.4	0.32	4.4
1.03	4.8	1.3	3.7
2.4	>10	>10	_
0.06	1.2	1.2	1.0
0.17	1.2	1.2	1.0
1.5	>10	>5	—
0.01	0.21	0.06	3.5
0.01	0.38	0.18	2.1
0.01	0.36	0.13	2.8
0.006	0.38	0.26	1.5
0.01	0.87	1.4	0.6
0.21	>5	>10	
	Growth 0.0003 0.002 0.04 0.25 0.50 1.4 0.007 0.16 0.50 1.03 2.4 0.06 0.17 1.5 0.01 0.01 0.01 0.01 0.006 0.01 0.21	$\begin{tabular}{ c c c c } \hline IC_{50} \ (\mu g/ml) \\ \hline \hline Growth & DNA synthesis \\ \hline 0.0003 & 0.29 \\ 0.002 & 1.2 \\ 0.04 & 4.6 \\ 0.25 & 2.6 \\ 0.50 & 3.3 \\ 1.4 & > 10 \\ 0.007 & 0.28 \\ 0.16 & 2.6 \\ 0.50 & 1.4 \\ 1.03 & 4.8 \\ 2.4 & > 10 \\ 0.06 & 1.2 \\ 0.17 & 1.2 \\ 1.5 & > 10 \\ 0.01 & 0.21 \\ 0.01 & 0.38 \\ 0.01 & 0.36 \\ 0.006 & 0.38 \\ 0.01 & 0.87 \\ 0.21 & > 5 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 6. Inhibitory activities of the products and their parent compounds on growth and nucleic acid synthesis of cultured L1210 leukemia cells.

In the inhibition test for nucleic acid synthesis, cultured L1210 leukemia cells (8×10^5 cells/ml) were exposed for 60 minutes to the drugs with supplemented ¹⁴C-labeled uridine or thymidine (0.05 μ Ci/ml), and the incorporation of the radioisotopes into acid insoluble material was measured. For the growth inhibition test, cultured L1210 leukemia cells (5×10^4 cells/ml) were exposed for 48 hours to the drugs and the viable cells were counted by coulter counter. IC₅₀ is expressed as a drug concentration required to inhibit by a 50% of control growth, and DNA and RNA syntheses of cultured L1210 cells.

parent compounds except for one more glycosidic sugar moiety. The additional sugars of the products were determined to link at C-4' since the chemical shifts of C-4' of the products shifted to lower field $(10 \sim 12 \text{ ppm})$ in comparison with those of the parent compounds. The chemical shifts of the additional sugars were identical to those of rhodinose residue of MA144 N1¹⁹ for products $1a \sim 7a$ and those of 2-deoxyfucose residue of MA144 S1¹⁹ for products $1b \sim 7b$. The small coupling constants (~3.67 Hz) of the anomeric protons indicated the glycosidic bonds are all α .

From all these findings, the structures of the products were determined as shown in Table 5.

Biological Activity

The inhibitory activity of the products on the growth and nucleic acid synthesis of cultured murine leukemic L1210 cells were shown in Table 6. The cytotoxic activity of the products except for **6a** and **6b** were reduced in comparison with those of their parent compounds, and **1b**, **2b**, **4b**, **5b**, and **7b** were less active than **1a**, **2a**, **4a**, **5a**, and **7a**, respectively. **6a** and **6b** were as cytotoxic as **6**. The inhibitory activity of the products on nucleic acid synthesis were also reduced or similar to those of the parent compounds. The IC₅₀ ratio of DNA and RNA (DNA/RNA) had no relation to the structure of the products. Antitumor effects *in vivo* of the products were tested in mice bearing L1210 leukemia by daily administration from day 1 to 10. **1a**, **1b**, **3b**, **5a**, and **5b** had a maximum antitumor activity of 213, 183, 213, 226, and 277% (T/C) at an optimum dose of 0.16, 0.08, 1.25, 1.0, and 4.0 mg/kg/day, respectively. Under the same

conditions, 1 and 3 had a T/C of 200 and 169% at an optimum dose of 0.06 and 0.39 mg/kg/day, respectively.

Discussion

We have reported that various anthracyclinones were converted into the corresponding trisaccharides which contained the same sugar moiety (cinerulosyl-2-deoxyfucosyl-rhodosaminyl trisaccharide: RN-dF-C) as that of aclarubicin when they were fed to the growing culture of aclarubicin-negative mutant strain KE303. Hybrid anthracyclines having the same trisaccharide residue, such as betaclamycin A (CG7), CG5, CG12, and trisarubicinol, were thus obtained by bioconversion of β -rhodomycinone, ε -rhodomycinone, α -citromycinone, and 13-dihydrocarminomycinone, respectively^{2,7)}. In this study, however, we found that the bioconversion of anthracyclinone monosaccharides with strain KE303 gave no corresponding trisaccharides but a pair of anthracyclinone disaccharides in which one had a rhodinose and the other a 2-deoxyfucose as an additional sugar. These results suggest that the presence of an aminosugar residue affects the biosynthetic formation of the trisaccharide residue on the aglycone. A sort of the attached aminosugar unaffected the disaccharide formation and glycosidation pattern. Doxorubicin and daunorubicin were not glycosidated but reduced to their 13-dihydro derivatives. It is very interesting since the same was seen with the conversion of their aglycones (doxorubicinone and daunorubicinone)², suggesting that both a methoxyl group at C-4 and oxygen at C-13 inhibited biosynthetic glycosidation.

Substitution at C-4' with rhodinose or 2-deoxyfucose, except for product 6, caused a reduced cytotoxic activity against cultured L1210 cells. The cytotoxic activities of $1a \sim 5a$, and 7a were decreased $2 \sim 7$ fold and those of $1b \sim 5b$, and 7b were decreased $5 \sim 133$ fold as compared with those of parental mono-saccharides. However, it was found that the 4'-substitution with a natural sugar gave a therapeutically improved effect by increased antitumor activity and diminished cytotoxicity.

Experimental

General

MP's were determined on a Kofler hot stage microscope and uncorrected. UV spectra were recorded on a Hitachi EPS 3T and IR spectra (KBr pellet) on a Hitachi EPI-GS Spectrophotometer. ¹H and ¹³C NMR were recorded with a JEOL JNM-GSX400 spectrometer at 400 MHz and 100 MHz, respectively. Chemical shifts were expressed in δ values (ppm) with TMS as an internal standard and coupling constants were given in J (Hz). Mass spectra were recorded with a Hitachi M-80H or JEOL JMS-SX102A spectrometer. Specific rotations were recorded on a Jasco DIP-181 digital polarimeter. TLC analyses were performed on Silica gel 60 F₂₅₄ (E. Merck).

Microorganism

The aclarubicin-negative mutant strain KE303 of *S. galilaeus* MA144-M1 was obtained as previously described²⁾, grown at 28°C on YS agar slant (yeast extract 0.3%, soluble starch 1.0%, and agar 1.5%, pH 7.2) and then stored at 5°C.

Microbial Conversion

A seed culture was grown aerobically at 28°C for 48 hours in a 500-ml Erlenmeyer flask containing 100 ml of a following medium: soluble starch 0.5%, glucose 0.5%, soybean meal 1.0%, yeast extract 0.1%, NaCl 0.1%, K₂HPO₄ 0.1%, MgSO₄·7H₂O 0.1%, pH 7.4. This culture was employed as inoculum (2%, v/v) to a 10-liter jar fermentor containing 5 liters of conversion medium. Conversion medium consisted of soluble starch 20 g, glucose 10 g, soybean meal 30 g, NaCl 3 g, K₂HPO₄ 1 g, MgSO₄·7H₂O 1 g, yeast extract 1 g, CuSO₄·5H₂O 0.0056 g, FeSO₄·7H₂O 0.0008 g, MnCl₂·4H₂O 0.0064 g, ZnSO₄·2H₂O 0.0016 g in 1,000 ml of tap water, pH 7.0. Conditions used were 2.5 liters/minute for aeration and 300 rpm for agitation. Cultivation was carried out at 28°C. After 24 hours, a methanol solution of a substrate (5 mg/ml) was added to the growing culture to give a final concentration of 50 µg/ml and the cultivation was further continued for 66 hours.

Antibiotic Assay

For the detection of the products by microbial conversion, to 2 ml of the culture broth was added equal volume of acetone and 0.1 ml of 1 M Tris-HCl buffer (pH 8.0). After agitation, products were extracted with 2 ml of CHCl₃ and the organic layer was evaporated to dryness. The residual anthracycline pigments were analyzed by TLC and HPLC. TLC was performed using a developing solvent of CHCl₃ - MeOH-AcOH - concd NH₄OH (150: 50: 5: 1: 1). HPLC was performed on a Shimadzu HPLC system consisting of LC-6A pump, SPD-6AV detector, and Chromatopak C-R3A integrator with a reverse-phase column, YMC-A312 (ODS) (Yamamura Chemical Laboratories Co. Ltd.). Acetonitrile - H₂O (35: 65) (adjusted to pH 2.0 with phosphoric acid) was used as a mobile phase and run at at flow rate of 1.0 ml/minute. Samples were dissolved in the mobile phase and 10 μ l of sample solution was injected. UV absorbance was monitored at 254 nm.

CG15-A (1a) and CG15-B (1b)

1 (500 mg) was added to 10 liters of the growing culture of strain KE303 and 522 mg of the crude powder containing 1a and 1b was prepared. The crude powder was dissolved in CHCl₃, applied to a column of silica gel (Wakogel C-200), and eluted with CHCl₃ - MeOH (20:1) and CHCl₃ - MeOH - H₂O (100:10:0.1, 80:10:0.1, and 60:10:0.1). Each of 1a and 1b was purified by silica gel TLC (Silica gel 60 PF_{254} , E. Merck) using CHCl₃ - MeOH - H₂O (50:10:0.1) as a developing solvent. The objective band was scraped from the TLC plate and extracted with CHCl₃ - MeOH (7:1). The extract was further purified by column chromatography on Toyopearl HW-40 (Toyo Soda MFG. Co., Ltd.). The product was eluted with CHCl₃ - MeOH (1:2) and concentrated *in vacuo* to dryness. The residual pigment was dissolved in 0.02 M acetate buffer (pH 3.5), washed with toluene and extracted with CHCl₃ at pH 8.0. CHCl₃ layer was washed with H₂O, dried over anhydrous sodium sulfate and concentrated *in vacuo* to a small volume. To the concentrate, an excess of *n*-hexane was added to precipitate an reddish brown powder. This procedure yielded 41 mg of 1a and 32 mg of 1b.

CG17-A (2a) and CG17-B (2b)

2 (250 mg) was added to 5 liters of the growing culture of strain KE303 and 275 mg of the crude powder containing 2a and 2b was prepared. The crude powder was dissolved in CHCl₃, applied to a column of silica gel (Wakogel C-200), and eluted with CHCl₃ - MeOH (20:1) and CHCl₃ - MeOH - H₂O (100:10:0.1 and 70:10:0.1). Each of 2a and 2b was further purified by silica gel TLC (Silica gel 60 PF₂₅₄, E. Merck) using CHCl₃ - MeOH - H₂O - AcOH - concd NH₄OH (120:50:5:1:1) as a developing solvent. The objective band was scraped from the TLC plate and extracted with CHCl₃ - MeOH (5:1). After being concentrated, the extract was dissolved in 0.02 M acetate buffer (pH 3.5), washed with toluene and extracted with CHCl₃ at pH 8.0. CHCl₃ layer was washed with H₂O, dried over anhydrous sodium sulfate and concentrated *in vacuo* to a small volume. To the concentrate, an excess of *n*-hexane was added to precipitate an reddish orange powder of the product. This procedure yielded 12 mg of 2a and 34 mg of 2b.

CG18-B (3b)

3 ($\overline{250}$ mg) was added to 5 liters of the growing culture of strain KE303 and 270 mg of the crude powder containing 3a and 3b was prepared. The crude powder was purified in the same way as described above (2a and 2b) to yield a small quantity of 3a and 15 mg of 3b as yellow powders.

CG19-A (4a) and CG19-B (4b)

4 (500 mg) was added to 10 liters of the growing culture of strain KE303 and 392 mg of the crude powder containing 4a and 4b was prepared. The crude powder was purified in the same way as described above (2a and 2b) to yield 27 mg of 4a and 52 mg of 4b as reddish orange powders.

CG20-A (5a) and CG20-B (5b)

5 (500 mg) was added to 10 liters of the growing culture of strain KE303 and 287 mg of the crude powder containing 5a and 5b was prepared. The crude powder was purified in the same way as described above (2a and 2b) to yield 35 mg of 5a and 28 mg of 5b as reddish orange powders.

CG21-A (6a) and CG21-B (6b)

6 (250 mg) was added to 5 liters of the growing culture of strain KE303 and 321 mg of the crude powder containing **6a** and **6b** was prepared. The crude powder was purified in the same way as described above (**2a** and **2b**) to yield 6 mg of **6a** and 16 mg of **6b** as reddish brown powders.

CG22-A (7a) and CG22-B (7b)

7 (250 mg) was added to 5 liters of the growing culture of strain KE303 and 456 mg of the crude powder containing 7a and 7b was prepared. The crude powder was purified by silica gel chromatography in the same way as described above (2a and 2b). 7a was purified by silica gel TLC using CHCl₃-MeOH-H₂O-AcOH-concd NH₄OH (120:50:5:1:1). 7b was purified by column chromatography on reverse phase silica gel (50 ml, YMC gel 60 Å) which was developed with acetonitrile-0.05 M ammonium formate (pH 4.0) (15:85~20:80). This procedure yielded 6 mg of 7a and 16 mg of 7b as reddish brown powders.

Qualitative Determination of Aglycone and Sugars by TLC

The product (1 mg) was dissolved in 1 ml of 0.1 N HCl and heated at 85°C for 30 minutes in a water bath. The aglycone, thus obtained, was extracted with CHCl₃. The CHCl₃ layer was evaporated to dryness *in vacuo* and the pigment residue was then subjected to TLC using a developing solvent of CHCl₃ - MeOH (20:1).

Alternatively, the aqueous layer containing sugar components was neutralized by addition of silver carbonate with a small amount of charcoal and centrifuged. The supernatant fluid was concentrated *in vacuo* and subjected to TLC using a developing solvent of BuOH-AcOH-H₂O (4:1:1). Sugars were detected by spraying with *p*-anisaldehyde-H₂SO₄ (each 5%) in 90% EtOH and heating at 90°C. Aclarubicin, MA144 N1¹⁹, MA144 L1¹⁹, and daunorubicin were also hydrolyzed under the same condition and the aqueous layers were used as a source of authentic sugars including L-rhodosamine, *N*-monomethyl-L-daunosamine, L-daunosamine, 2-deoxy-L-fucose, L-rhodinose, and L-cinerulose A; Rf values of them were 0.13, 0.24, 0.32, 0.59, 0.72, and 0.80, respectively.

Biological Activity

In vitro cytotoxicity and inhibition of DNA and RNA syntheses in cells of murine leukemia L1210 were assayed according to the method previously described¹).

References

- YOSHIMOTO, A.; Y. MATSUZAWA, T. OKI, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: Microbial conversion of *s*-pyrromycinone and *s*-isorhodomycinone to 1-hydroxy-13-dihydrodaunomycin and N-formyl-1-hydroxy-13dihydrodaunomycin and their bioactivities. J. Antibiotics 33: 1150~1157, 1980
- OKI, T.; A. YOSHIMOTO, Y. MATSUZAWA, T. TAKEUCHI & H. UMEZAWA: Biosynthesis of anthracycline antibiotics by *Streptomyces galilaeus*. I. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone. J. Antibiotics 33: 1331 ~ 1340, 1980
- MATSUZAWA, Y.; A. YOSHIMOTO, T. OKI, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: Biosynthesis anthracycline antibiotics by *Streptomyces galilaeus*. II. Structure of new anthracycline antibiotics obtained by microbial glycosidation and biological activity. J. Antibiotics 33: 1341 ~ 1347, 1980
- OKI, T.; A. YOSHIMOTO, Y. MATSUZAWA, T. TAKEUCHI & H. UMEZAWA: New anthracycline antibiotic, 2-hydroxyaclacinomycin A. J. Antibiotics 34: 916~918, 1981
- YOSHIMOTO, A.; Y. MATSUZAWA, Y. MATSUSHITA, T. OKI, T. TAKEUCHI & H. UMEZAWA: Trisarubicinol, new antitumor anthracycline antibiotic. J. Antibiotics 34: 1492~1494, 1981
- 6) YOSHIMOTO, A.; O. JOHDO, Y. TAKATSUKI, T. ISHIKURA, T. SAWA, T. TAKEUCHI & H. UMEZAWA: New anthracycline antibiotics obtained by microbial glycosidation of β -isorhodomycinone and α_2 -rhodomycinone. J. Antibiotics 37: 935~938, 1984
- JOHDO, O.; A. YOSHIMOTO, T. ISHIKURA, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: New anthracycline antibiotic CG12 obtained by microbial glycosidation of α-citromycinone. Agric. Biol. Chem. 50: 1657~1659, 1986
- YOSHIMOTO, A.; T. OKI, T. TAKEUCHI & H. UMEZAWA: Microbial conversion of anthracyclinones to daunomycin by blocked mutants of *Streptomyces coeruleorubidus*. J. Antibiotics 33: 1158~1166, 1980
- 9) JOHDO, O.; H. TONE, R. OKAMOTO, A. YOSHIMOTO & T. TAKEUCHI: Production of new anthracycline antibiotics

by microbial 4-O-methylation using a specific daunorubicin-negative mutant. J. Antibiotics 45: 1837 ~ 1847, 1992

- 10) YOSHIMOTO, A.; O. JOHDO, Y. WATANABE, T. ISHIKURA, H. NAGANAWA, T. SAWA, T. TAKEUCHI (Sanraku): New anthracycline antibiotics. Jpn. Kokai 93599 ('89), Apr. 12, 1989
- 11) YOSHIMOTO, A.; O. JOHDO, Y. WATANABE, R. OKAMOTO, H. NAGANAWA, T. SAWA, T. TAKEUCHI (Sanraku): New anthracycline antibiotics. Jpn. Kokai 59595 ('90), Feb. 28, 1990
- 12) YOSHIMOTO, A.; S. FUJII, O. JOHDO, K. KUBO, T. ISHIKURA, H. NAGANAWA, T. SAWA, T. TAKEUCHI & H. UMEZAWA: Intensely potent anthracycline antibiotic oxaunomycin produced by a blocked mutant of the daunorubicinproducing microorganism. J. Antibiotics 39: 902~909, 1986
- YOSHIMOTO, A.; S. FUJII, O. JOHDO, K. KUBO, H. NISHIDA, R. OKAMOTO & T. TAKEUCHI: Anthracycline metabolites from baumycin-producing *Streptomyces* sp. D788. II. New anthracycline metabolites produced by a blocked mutant strain RPM-5. J. Antibiotics 46: 56~64, 1993
- 14) JOHDO, O.; H. TONE, R. OKAMOTO, A. YOSHIMOTO, H. NAGANAWA, T. SAWA & T. TAKEUCHI: Anthracycline metabolites from *Streptomyces violaceus* A262. IV. New anthracycline yellamycins produced by a variant strain SC-7. J. Antibiotics 44: 1155~1159, 1991
- 15) YOSHIMOTO, A.; O. JOHDO, H. NISHIDA, R. OKAMOTO & T. TAKEUCHI: Anthracycline metabolites from baumycin-producing *Streptomyces* sp. D788. III. Anthracycline metabolites produced by new blocked mutants 4L-660 and YDK-18. J. Antibiotics, to submitted
- 16) CASSINELLI, G.; A. GREIN, P. MASI, A. SUARATO, L. BERNARDI, F. ARCAMONE, A. D. MARCO, A. M. CASAZZA, G. PRATESI & C. SORANZO: Preparation and biological evaluation of 4-O-demethyldaunorubicin (carminomycin I.) and of its 13-dihydro derivative. J. Antibiotics 31: 178~184, 1978
- 17) YOSHIMOTO, A.; Y. MATSUZAWA, T. ISHIKURA, T. SAWA, T. TAKEUCHI & H. UMEZAWA: New anthracycline derivatives from betaclamycin A. J. Antibiotics 37: 920~922, 1984
- 18) JOHDO, O.; H. TONE, R. OKAMOTO, A. YOSHIMOTO, H. NAGANAWA, T. SAWA & T. TAKEUCHI: Photochemically obtained N-demethyl derivatives of anthracyclines. J. Antibiotics 45: 1653~1661, 1992
- 19) OKI, T.; I. KITAMURA, Y. MATSUZAWA, N. SHIBAMOTO, T. OGASAWARA, A. YOSHIMOTO, T. INUI, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: Antitumor anthracycline antibiotics, aclacinomycin A and analogues. II. Structural determination. J. Antibiotics 32: 801~819, 1979